

INSTALLATION MANUAL

X-POWER DC Inverter (K series) Outdoor Unit

Thank you very much for purchasing our air conditioner, Before using your air conditioner , please read this manual carefully and keep it for future reference.

Caution:The manual is applicable for the cooling&heating and cooling only outdoor unit.The cooling&heating indoor unit is applicable for the cooling&heating and the cooling only outdoor unit;the heating capacity of the indoor unit will be effective only when the indoor unit connect to the cooling&heating outdoor unit.

CONTENTS

PAGE

PRECAUTIONS	1
CONSTRUCTION CHECKPOINTS	2
ACCESSORIES	3
OUTDOOR UNIT INSTALLATION	3
REFRIGERANT PIPE	9
ELECTRIC WIRING	15
TRIAL RUN	22
CUSTOMER DETAILS	24

1. PRECAUTIONS

Precautions before reading the Installation manual.

- This Installation manual is for the outdoor unit.
- Refer to the indoor unit Installation manual for indoor parts installation.
- Please read the power source unit Installation manual to install the power source unit.
- Please refer to the refrigerant distributor Installation manual to install the refrigerant distributor.

The safety precautions listed here are divided into two categories. In either case, important safety information is listed which must be read carefully.

WARNING

Failure to observe a warning may result in death. The appliance shall be installed in accordance with national wiring regulations.

Failure to observe a caution may result in injury or damage to the equipment.

After completing the installation, make sure that the unit operates properly during the start-up operation. Please instruct the customer on how to operate the unit and keep it tained. Also, inform customers that they should store this Installation manual along with the owner's manual for future reference.

WARNING

Be sure only trained and qualified service personnel to install, repair or service the equipment.

Improper installation, repair, and maintenance may result in electric shocks, short-circuit, leaks, fire or other damage to the equipment.

- Install according to this installation instructions strictly. If installation is defective, it will cause water leakage, electrical shock fire.
- When installing the unit in a small room, take measures against to keep refrigerant concentration from exceeding allowable safety limits in the event of refrigerant leakage. Contact the place of purchase for more information. Excessive refrigerant in a closed ambient can lead to oxygen deficiency.

- Use the attached accessories parts and specified parts for installation. Otherwise, it will cause the set to fall, water leakage, electrical shock fire.
- Install at a strong and firm location which is able to withstand the set's weight. If the strength is not enough or installation is not properly done, the set will drop to cause injury.
- The appliance shall be installed in accordance with national wiring regulations
- The appliance shall not be installed in the laundry.
- Before obtaining access to terminals, all supply circuits must be disconnected.
- The appliance must be positioned so that the plug is accessible.
- The enclosure of the appliance shall be marked by word, or by symbols, with the direction of the fluid flow.
- For electrical work, follow the local national wiring standard, regulation and this installation instructions. An independent circuit and single outlet must be used. If electrical circuit capacity is not enough or defect in electrical work, it will cause electrical shock fire.
- Use the specified cable and connect tightly and clamp the cable so that no external force will be acted on the terminal. If connection or fixing is not perfect, it will cause heat-up or fire at the connection.

Wiring routing must be properly arranged so that control board cover is fixed properly.

If control board cover is not fixed perfectly, it will cause heat-up at connection point of terminal, fire or electrical shock.

- If the supply cord is damaged, it must be replaced by the manufacture or its service agent or similarly qualified person in order to avoid a hazard.
- An all-pole disconnection device which has at least 3mm separation distance in all pole and a residual current device(RCD)with the rating of above 10mA shall be incorporated in the fixed wiring according to the national rule
- When carrying out piping connection, take care not to let air substances go into refrigeration cycle. Otherwise, it will cause lower capacity, abnormal high pressure in the refrigeration cycle, explosion and injury.
- Do not modify the length of the power supply cord or use of extension cord, and do not share the single outlet with other electrical appliances. Otherwise, it will cause fire or electrical shock.
- Carry out the specified installation work after taking into account strong winds, typhoons or earthquakes. Improper installation work may result in the equipment falling and causing accidents.
- The temperature of refrigerant circuit will be high, please keep the interconnection cable away from the copper tube.
- The power cord type designation is H07RN-F.
- Equipment complying with IEC 61000-3-12.

If the refrigerant leaks during installation, ventilate the area immediately.

Toxic gas may be produced if the refrigerant comes into the place contacting with fire.

After completing the installation work, check that the refrigerant does not leak. Toxic gas may be produced if the refrigerant leaks into the room and comes into contact with a source of fire, such as a fan heater, stove or cooker.

CAUTION

- The cooling&heating indoor unit is applicable for the cooling&heating and the cooling only outdoor unit;the heating capacity of the indoor unit will be effective only when the indoor unit connect to the cooling&heating outdoor unit.
- This A/C is a kind of amenity unit. Don't install it at the place where for storing machine, precise instrument, food, plant, animal, artwork or any other special used occasion.
- Ground the air conditioner. Do not connect the ground wire to gas or water pipes, lightning rod or a telephone ground wire. Incomplete grounding may result in electric shocks.
- Be sure to install an earth leakage breaker. Failure to install an earth leakage breaker may result in electric shocks.
- Connect the outdoor unit wires , then connect the indoor unit wires. You are not allowed to connect the air conditioner with the

power source until wiring and piping the air conditioner is done.

- While following the instructions in this Installation manual, install drain piping in order to ensure proper drainage and insulate piping in order to prevent condensation. Improper drain piping may result in water leakage and property damage.
- Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 meter away from televisions or radios in order to prevent image interference or noise. Depending on the radio waves, a distance of 1 meter may not

be sufficient enough to eliminate the noise.

- The appliance is not intended for use by young children or infirm persons without supervision.
- Young children should be supervised to ensure that they do not play with the appliance.
- Don't install the air conditioner in the following locations:
- . There is petrolatum existing.
- There is salty air surrounding (near the coast). (Except for the models with corrosion-resistant function)
- There is caustic gas (the sulfide, for example) existing in the air (near a hot spring).
- The Volt vibrates violently (in the factories).
- In buses or cabinets.
- . In kitchen where it is full of oil gas.
- There is strong electromagnetic wave existing.
- There are inflammable materials or gas.
- There is acid or alkaline liquid evaporating.
- Other special conditions.

The insulation of the metal parts of the building and the air conditioner should comply with the regulation of National Electric Standard.

2. CONSTRUCTION CHECKPOINTS

- Acceptance and Unpacking
- After the machine arrives, check whether it is damaged during the shipment. If the surface or inner side of the machine is damaged, submit a written report to the shipping company.
- Check whether the model, specification and quantity of the equipment conform to the contract.
- After removing the outer package, please keep the operation instructions well and count the accessories.
- Refrigerant pipe
- Check the model and name to avoid mistaken installation.
- An additionally purchased refrigerant distributor (manifold adapter and manifold pipe) must be used for installing the refrigerant pipes.
- The refrigerant pipes must have the specified diameter. Nitrogen of a certain pressure must be filled into the refrigerant pipe before welding.
- The refrigerant pipe must undergo heat insulation treatment.
- After the refrigerant pipe is installed completely, the indoor unit cannot be powered on before performing the airtight test and creating a vacuum. The air-side and liquid-side pipes must undergo the airtight test and vacuum extraction.
- Airtight test The refrigerant pipe must undergo the airtight test [with 3.9 MPa(40kgf/CM2) nitrogen].
- Creating a vacuum Be sure to use the vacuum pump to create a vacuum of the connective pipe at the air side and liquid side concurrently.
- Refrigerant replenishment
- If the length is greater than the reference pipe, the refrigerant replenishment quantity for each system should be calculated through the formula obtained according to the actual length of pipe.
- Record the refrigerant replenishment quantity, actual length of pipe and the height difference of the indoor & outdoor unit onto the operation confirmation table of the outdoor unit in advance for future reference.
- Electric wiring
- Select the power supply capacity and wire size according to the design manual. The power cable of the air conditioner is generally thicker than the power cable of the motor.
- In order to prevent misoperation of the air conditioner, do not interleave or entwine the power cablewith the connection wires (low-voltage wires) of the indoor/outdoor unit.
- Power on the indoor unit after performing the airtight test and making a vacuum.
- For details of setting the address of the outdoor unit, see Outdoor unit address bits.
- Trial run
- Perform the trial run only after the outdoor unit has been powered on for over 12 hours.

3. ACCESSORIES

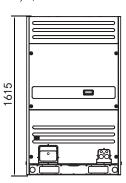
Table.3-1

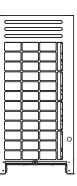
Table.5-1			
Model Name	Qty.	Outline	Function
Outdoor unit installation manual	1	This manual	
Outdoor unit owner's manual	1		Be sure to deliver it to the customer
Indoor unit owner's manual	1		Be sure to deliver it to the customer
Accrssory screw bag	1		For use in maintenance
Toggling flathead screw	1		For toggling of indoor and outdoor units
90° mouthing elbow	1		For connecting pipes
Seal plug	8		For cleansing pipes
Conneting pipe subassembly	1		For conneting liquid side
Connecting pipe	1(8,10,16,18HP) 2(12,14HP)	•	For connecting to the air pipe side when it's needed

4. OUTDOOR UNIT INSTALLATION

4.1 Outdoor unit combination

Table.4-1

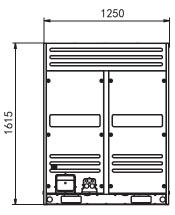

ΗP	Mode	Max. indoor units nos.	HP	Mode	Max. indoor units nos.
8	8HP×1	13	26	16HP+10HP	43
10	10HP×1	16	28	18HP+10HP	46
12	12HP×1	20	30	16HP+14HP	50
14	14HP×1	23	32	18HP+14HP	53
16	16HP×1	26	34	18HP+16HP	56
18	18HP	29	36	18HP×2	59
20	10HP×2	33	38	18HP+10HP×2	63
22	12HP+10HP	36	40	16HP+14HP+10HP	64
24	14HP+10HP	39	42	16HP×2+10HP	64


Table.4-2

HP	Mode	Max. indoor units nos.	HP	Mode	Max. indoor units nos.
44	18HP+16HP+10HP	64	60	18HP×2+14HP+10HP	64
46	18HP×2+10HP	64	62	18HP×2+16HP+10HP	64
48	18HP+16HP+14HP	64	64	18HP×3+10HP	64
50	18HP×2+14HP	64	66	18HP×2+16HP+14HP	64
52	18HP×2+16HP	64	68	18HP×3+14HP	64
54	18HP×3	64	70	18HP×3+16HP	64
56	18HP×2+10HP×2	64	72	18HP×4	64
58	18HP+16HP+14HP+10HP	64			

4.2 Dimension of outdoor unit

1) 8,10HP



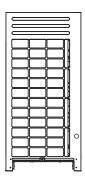
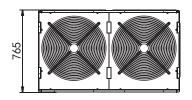
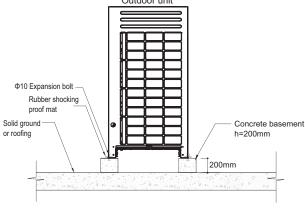

960 991

Fig.4-1

Unit:mm

2) 12 ,14,16,18HP




Fig.4-2

4.3 Selecting installation position

- Ensure that the outdoor unit is installed in a dry, well-ventilated place.
- Ensure that the noise and exhaust ventilation of the outdoor unit do not affect the neighbors of the property owner or the surrounding ventilation.
- Ensure that the outdoor unit is installed in a well-ventilated place that is possibly closest to the indoor unit.
- Ensure that the outdoor unit is installed in a cool place without direct sunshine exposure or direct radiation of high-temp heat source.
- Do not install the outdoor unit in a dirty or severely polluted place, so as to avoid blockage of the heat exchanger in the outdoor unit.
- Do not install the outdoor unit in a place with oil pollution or full of harmful gases such as sulfurous gas.
- Do not install the outdoor unit in a place surrounded by salty air. (Except for the models with corrosion-resistant function.)

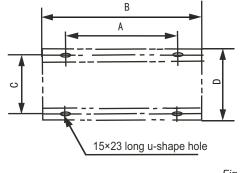
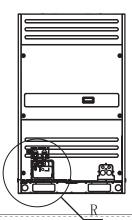
4.4 Base for outdoor unit

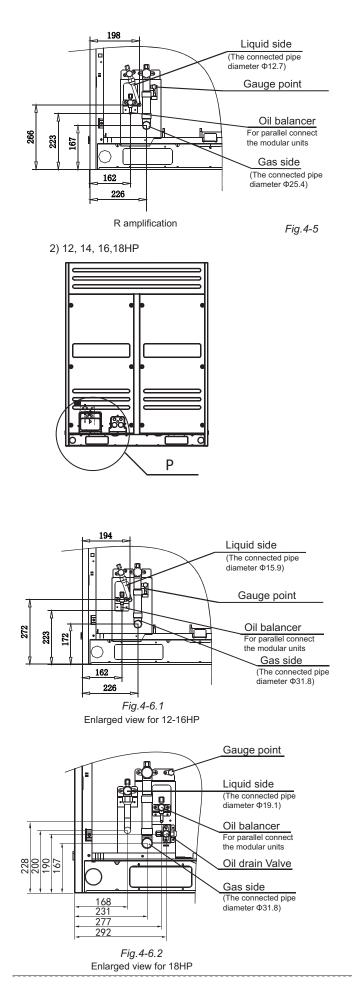
- A solid, correct base can:
- Avoid the outdoor unit from sinking.
- Avoid the abnormal noise generated due to base.
- Base types
- Steel structure base
- Concrete base (see the figure below for the general making method)
 Outdoor unit

CAUTION

- The key points to make basement:
- The master unit's basement must be made on the solid concrete ground. Refer to the structure diagram to make concrete basement in detail, or make after field measurements.
- In order to ensure every point can contact flat, the basement should be on completely level.

- If the basement is placed on the roofing, the detritus layer isn't needed, but the concrete surface must be flat. The standard concrete mixture ratio is cement 1/ sand 2/ carpolite 4, and add Φ10 strenthen reinforcing steel bar, the surface of the cement and sand plasm must be flat, border of the the basement must be chamfer angle.
- Before construct the unit base, please ensure the base is directly supporting the rear and front folding edges of the bottom panel vertically, for the reason of these edges are the actual supported sites to the unit.
- In order to drain off the seeper around the equipment, a discharge ditch must be setup around the basement.
- Please check the affordability of the roofing to ensure the load capacity.
- When piping from the bottom of the unit, the base height should no less than 200mm.
- Position illustration of screw bolt (Unit: mm)


Fig.4-4

Unit: mm

Model Size	8,10HP	12,14,16,18HP	
А	830	1120	
В	960	1250	
С	736	736	
D	765	765	

Centering position illustration of each connective pipe (Unit: mm)
 1) 8,10HP

4.5 Outdoor units' placement sequence & master and slave units' settings

A system, which provide with more than two outdoor units, will be set as the followings method: The outdoor units in this system should place sequentially from the large to the small capacity; the largest capacity outdoor unit must be mounted at the first branching site; and set the largest capacity outdoor unit address as the master Unit, while the other setting as the Slave Unit. Take 38HP (composed by 10HP, 12HP and 16HP) as an example:

- 1) Place the 16HP at a side of the first branching site.
- 2) Place the unit from the large capacity to the small (See the detail placement illustration)
- 3) Set 16HP as the master unit, while the 12HP and the 10HP as the aux. unit.

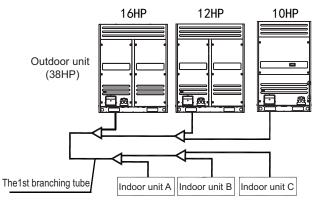
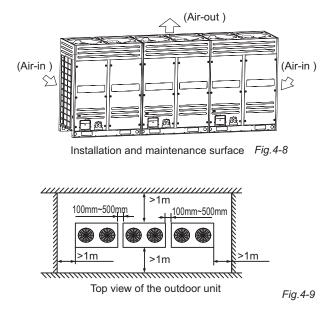
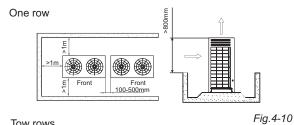
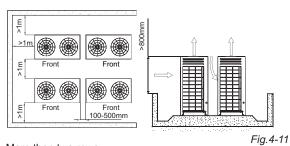



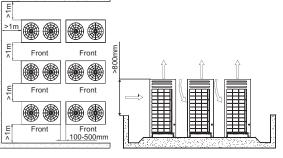
Fig.4-7

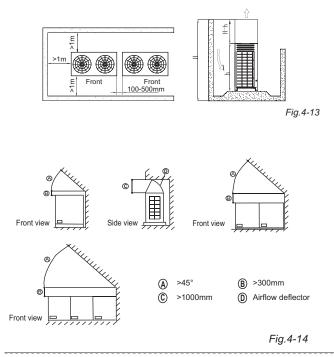

4.6 Installation space for outdoor unit

- Ensure enough space for maintenance. The modules in the same system must be on the same height.(see the Fig.4-8)
- When installing the unit, leave a space for maintenance shown in *Fig.4-9*. Install the power supply at the side of the outdoor unit. For installation procedure, see the power supply device Installation manual.
- In case any obstacles exist above the outdoor unit, refer to Fig.4-14.



4.7 Layout


When the outdoor unit is higher than the surrounding obstacle


Tow rows

More than two rows

- Fig.4-12
- When the outdoor unit is lower than the surrounding obstacle, refer to the layout, to avoid cross connection of the outdoor hot air from affecting the heat exchange effect, please add an air director onto the exhaust hood of the outdoor unit to facilitate heat dissipation. See the figure below. The height of the air director is HD (namely H-h). Please make the air director on site.

Installation manual

4.8 Set the snow-proof facility

In snowy areas, facilities should be installed. (Refer to figure below) (defective facilities may cause malfunction.) Please lift the bracket higher and install snow shed at the air inlet and air outlet.

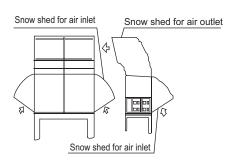
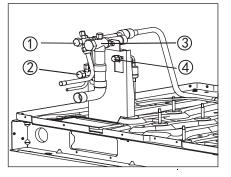



Fig.4-15

4.9 Explanation of valve

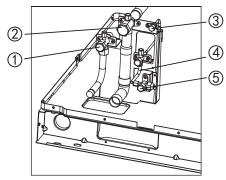
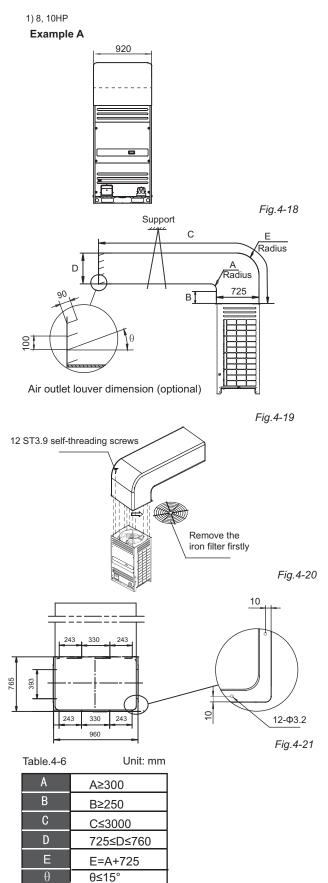
Note: For a single modular that is not necessary to connect with oil balancer.

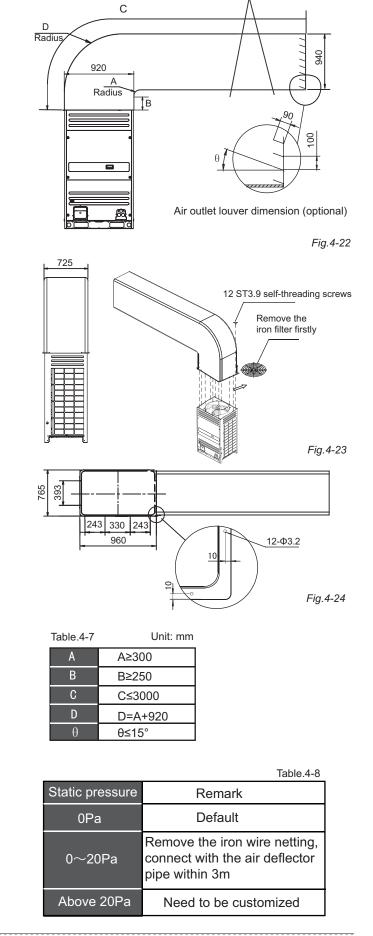
Fig.4-16

Fig.4-17

Table.4-4

1	Liquid side stop valve	
2	Oil balancer	
3	Gas side stop valve	8-16HP
4	Gauge point(Use for detecting pressure and refrigerant)	

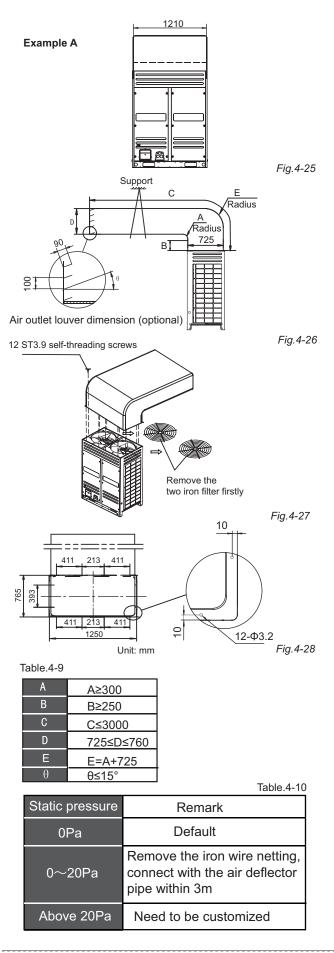



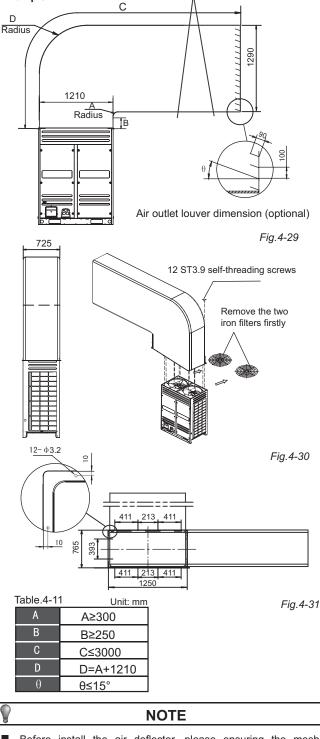

Table.4-5

1	Liquid side stop valve	
2	Gas side stop valve	
3	Gauge point(Use for detecting pressure and refrigerant)	18HP
4	Oil balancer	
5	Oil drain valve	

4.10 Mount the air deflector

Before install the air deflector (purchased by user), please ensure the mesh enclosure has been taken off, and then install as the following two methods.





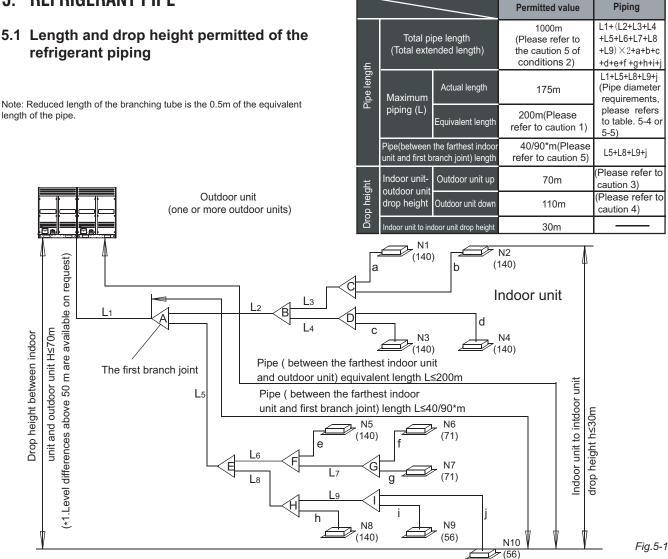
Support

Example B

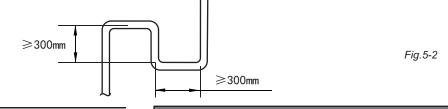
2) 12, 14, 16,18HP

Support

Example B


- Before install the air deflector, please ensuring the mesh enclosure has been took off, otherwise the air supply efficiency would be block down.
- Once mounting the shutter to the unit, air volume, cooling (heating) capacity and efficiency would be block down, this affection enhance along with the angle of the shutter. Thus, we are not recommend you to mount the shutter, if necessary in use, please adjust the angle of shutter no larger than 15°.
- Only one bending site to be allowanced in the air duct (see as above figure), otherwise, misoperation may led out.
- Install the flexible connector between the unit and the air pipe. for avoiding to produce vibration noise.

5. REFRIGERANT PIPE


5.1 Length and drop height permitted of the refrigerant piping

length of the pipe.

Table.5-1

*1.Level difference above 50m are not supported by default but the project need to be apporved by the manufactor .(if the outdoor unit is above the indoor unit.)

CAUTION

- 1. The equivalent length of the each branch joint is 0.5m.
- 2. The inner units should as equal as possible to be installed in the both sides of the U-shape branch joint.
- 3. When the outdoor unit is on the top position and the difference of level is over 20m, it is recommended that set a oil return bend every 10m in the gas pipe of the main pipe, the specification of the oil return bend refers to Fig.5-2.
- 4. When the outdoor unit is on the low positon, H≥40m, the liquid pipe of the main pipe need to increase one size.
- The allowable length of the fist branch joint which connected to the indoor unit should be equal to or shorter than 40m. But when the following conditions are all meeted, the allowable length can extended to 90m.

Conditions 1

1. It is needed to increase all the pipe diameters of the the main distribution pipe which between the first and the last branch joint assembly. (Please change the pipe diameter at field) If the pipe diameter of the indoor unit main pipe is the same as the main pipe, then it is not needed to be increased.

Examples

■ N10 L5+L8+L9+j≤90m L2, L3, L4, L5, L6, L7, L8, L9

Need to increase the pipe diameter of the distribution pipe

Increasing size as the following

φ 9.5→ φ 12.7 ϕ 12. 7 \rightarrow ϕ 15. 9 ϕ 15. 9 \rightarrow ϕ 19. 1 ϕ 19. 1 \rightarrow ϕ 22. 2 ϕ 22. 2 \rightarrow ϕ 25. 4 ϕ 25. 4 \rightarrow ϕ 28. 6 ϕ 28. 6 \rightarrow ϕ 31. 8 ϕ 31. 8 \rightarrow ϕ 38. 1 ϕ 38. 1 \rightarrow ϕ 41. 3 φ 41. 3 \rightarrow φ 44. 5 φ 44. 5 \rightarrow φ 54. 0

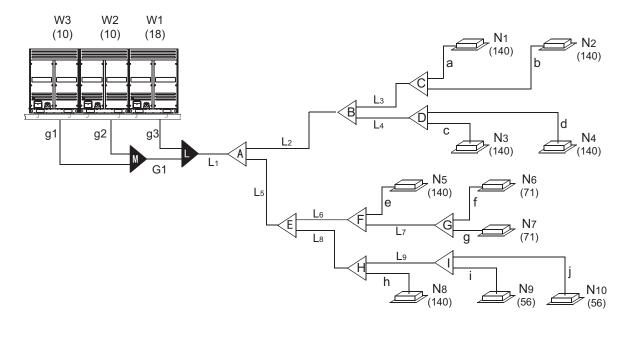
Conditions 2			
2. When counting the total extended length, the actual length of above distribution pipes must be doubled.(Expect the main pipe and the distribution pipes which no need to be increased.)			
$L1+(L2+L3+L4+L5+L6+L7+L8+L9) \times 2+a+b+c+d+e+f+g+h+i+j \leq 1000m$			
Examples			
Reference Figure. 5-1			
Conditions 3			
3. The length from the indoor unit to the nearest branch joint assembly $\leq 40m$ a, b, c, j $\leq 40m$ (Pipe diameter requirements, please refers to table .5-9)			
Examples			
Reference Figure .5-1			
Conditions 4			
4. The distance difference between [the outdoor unit to the farthest indoor unit] and [the outdoor unit to the nearest indoor unit] is ≤ 40 m.			
The farthest indoor unit N10			
The nearest indoor unit $\boxed{N1}$ (L1+L5+L8+L9+j) - (L1+L2+L3+a) $\leq 40m$			

Examples

Reference Figure .5-1

5.2 Select the refrigerant piping type

Table.5-2


Pipe name	Code (As per the Fig. 5-3)	
Main pipe	L1	
Indoor unit main pipe	L2~L9	
Indoor unit aux. pipe	a, b, c, d, e, f, g, h, i, j	
Indoor unit branch joint assembly	A, B, C, D, E, F, G, H, I	
Outdoor unit branch joint assembly	L, M	
Outdoor unit connective pipe	g1, g2, g3, G1	

5.3 Size of joint pipes for indoor unit

Table.5-3	Size of joint pipes for R410A indoor unit
-----------	---

Capacity of indoor unit	Size of main pipe(mm)			
A(×100W)	Gas side	Liquid side	Available branch joint	
A<166	Ф15.9	Ф9.5	BJF-224-CM(i)	
166≤A<230	Ф19.1	Ф9.5	BJF-224-CM(i)	
230≤A<330	Φ22.2	Ф9.5	BJF-330-CM(i)	
330≤A<460	Ф28.6	Φ12.7	BJF-710-CM(i)	
460≤A<660	Ф28.6	Φ15.9	BJF-710-CM(i)	
660≤A<920	Ф31.8	Φ19.1	BJF-710-CM(i)	
920≤A<1350	Ф38.1	Ф19.1	BJF-1344-CM(i)	
1350≤A	Ф41.3	Ф22.2	BJF-E1344-CM(i)	

e.x.1: Refer to Fig.5-3 , the capacity of downstream units to L2 is 140×4=560, i.e. the gas pipe for L2 is Φ 28.6, liquid pipe is Φ 15.9.

Fig.5-3

5.4 Size of joint pipes for outdoor unit

Base on the following tables, select the diameters of the outdoor unit connective pipes. In case of the main accessory pipe large than the main pipe, take the large one for the selection.

Example: parallel connect with the three outdoor units 16+16+14 (the total capacity is 46HP), all indoor units total capacity is 1360, provided that the equivalent length of all pipes are ≥90m, according to the Table. 5-5 the main pipe diameter areΦ38.1/Φ22.2; in according to all indoor unit capacity 1360, we could find out the master unit diameter isΦ41.3/Φ22.2 base on Table.5-3. Take the large one for the selection, we final confirm the main pipe diameter is Φ41.3/Φ22.2.

Model	When the equivalent length of all liquid pipes < 90m, the size of main pipe(mm)				
	Gas side Liquid side		The 1st branch joint		
8HP	Ф22.2	Ф9.53	BJF-330-CM(i)		
10HP	Ф22.2	Ф9.53	BJF-330-CM(i)		
12~14HP	Ф25.4	Φ12.7	BJF-330-CM(i)		
16HP	Ф28.6	Ф12.7	BJF-710-CM(i)		
18~22HP	Ф28.6	Φ15.9	BJF-710-CM(i)		
24HP	Ф28.6	Φ15.9	BJF-710-CM(i)		
26~32HP	Ф31.8	Φ19.1	BJF-710-CM(i)		
34~48HP	Ф38.1	Ф19.1	BJF-1344-CM(i)		
50~64HP	Ф41.3	Ф22.2	BJF-E1344-CM(i)		
66~72HP	Ф44.5	Ф25.4 BJF-E1344-C			

Table.5-5 Size of joint pipes for R410A outdoor unit

Model	When the equivalent length of all liquid pipes \ge 90m, the size of main pipe(mm)				
	Gas side	Gas side Liquid side The			
8HP	Φ22.2	Φ12.7	BJF-330-CM(i)		
10HP	Ф25.4	Ф12.7	BJF-330-CM(i)		
12~14HP	Ф28.6	Φ15.9	BJF-710-CM(i)		
16HP	Ф31.8	Ф15.9	BJF-710-CM(i)		
18~22HP	Ф31.8	Ф19.1	BJF-710-CM(i)		
24HP	Ф31.8	Ф19.1	BJF-710-CM(i)		
26~32HP	Ф38.1	Φ22.2	BJF-1344-CM(i)		
34~48HP	Ф38.1	Ф22.2	BJF-1344-CM(i)		
50~64HP	Ф44.5	Ф25.4	BJF-E1344-CM(i)		
66~72HP	Ф54.0	Ф25.4	BJF-E1500-CM(i)		

5.5 Branch pipes for outdoor unit

Table.5-6

Model	Outdoor unit pipe connective opening dimension(mm)			
	Gas side	Liquid side		
8HP, 10HP	Ф25.4	Φ12.7		
12HP, 14HP, 16HP	Ф31.8	Ф15.9		
18HP	Ф31.8	Ф19.1		

5.6 Branch pipes for indoor unit

Base on Table.5-7 and Table.5-8 select the multi connecting pipes of outdoor unit. Before installation, please read the Outdoor Unit branch joint Installation Manual carefully.

Table.5-7 Outdoor unit multi-connective pipe assembly (Illustration)

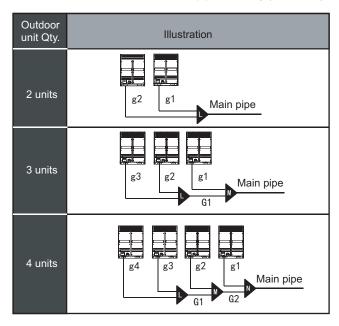


Table.5-8 Outdoor unit multi-connective pipe assembly

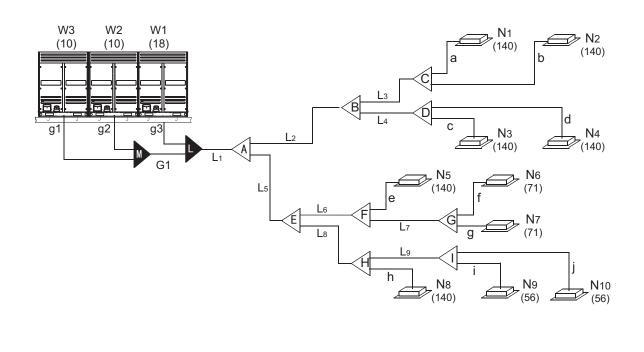
- 11	Outdoor unit Qty.	Outdoor unit connective pipe diameter	Parallel connect with the branch joint assembly	Main pipe
	2 units	g1, g2: 8, 10HP: Ф25.4/Ф12.7; 12~18HP: Ф31.8/Ф15.9	L: BJC-02-CM(i)	
	3 units	g1, g2, g3: 8, 10HP: Ф25.4/Ф12.7; 12~18HP: Ф31.8/Ф15.9; G1: Ф38.1/Ф19.1	L+M: BJC-03-CM(i)	Refer to Table. 5-4 or 5-5 for main pipe
	4 units	g1, g2, g3, g4: 8, 10HP: Ф25.4/Ф12.7; 12~18HP: Ф31.8/Ф15.9; G1: Ф38.1/Ф19.1; G2: Ф41.3/Ф22.2	L+M+N: BJC-04-CM(i)	dimension

Note: The pipe assemblies in above table is special for this model, must be purchased separately.

5.7 Example

- 1) Take (18+10+10) HP that composed by three modules as an example to clarify the pipe selection.
- 2) Take Fig.5-4 as an example. Provided that the equivalent length of all pipes in this system is larger than 90m.

Table.5-9 Unit: mm					
Indoor unit capacity	When branch joint's length ≤10m		When branch joint's length>10m		
A(×100W)		Gas side	Liquid side	Gas side	Liquid side
	A≤45 Φ12.7 Φ6.4		Ф15.9	Ф9.5	
	A≥56	Ф15.9	Ф9.5	Ф19.1	Φ12.7


А	The branch joint at the inside of the unit.
	There are a~j branch joints at the inside of the unit, the branch

- joint diameter should be select as per Table. 5-9. B Main pipe at the inside the unit (Refer to Table. 5-3)
- The main pipe L3 with N1, N2 downstream indoor units that total capacity is 140×2=280, the pipe L3 diameter is Φ22.2/Φ 9.5, thus select BJF-330-CM(i) for the branch joint C.
- The main pipe L4 with N3, N4 downstream indoor units that total capacity is 140×2=280, the pipe L4 diameter is Φ22.2/Φ 9.5, thus select BJF-330-CM(i) for the branch joint D.
- The main pipe L2 with N1~N4 downstream indoor units that total capacity is 140×4=560, the pipe L2 diameter is Φ28.6/Φ 15.9, thus select BJF-710-CM(i) for the branch joint B.
- The main pipe L7 with N6, N7 downstream indoor units that total capacity is 71×2=142, the pipe L7 diameter is Φ15.9/Φ 9.5, thus select BJF-224-CM(i) for the branch joint G.
- The main pipe L6 with N5~N7 downstream indoor units that total capacity is 140+71×2=282, the pipe L6 diameter is Φ22.2/ Φ9.5, thus select BJF-330-CM(i) for the branch joint F.

- 6) The main pipe L9 with N9, N10 downstream indoor units that total capacity is 56+56=112, the pipe L9 diameter is Φ15.9/Φ9.5, thus select BJF-224-CM(i) for the branch joint I.
- 7) The main pipe L8 with N8 \sim N10 downstream indoor units that total capacity is 140+56+56=252, the pipe L8 diameter is Φ 22.2/ Φ 9.5, thus select BJF-330-CM(i) for the branch joint H.
- 8) The main pipe L5 with N5 \sim N10 downstream indoor units that total capacity is 140×2+56×2+71×2=534, the pipe L5 diameter is Φ 28.6/ Φ 15.9, thus select BJF-710-CM(i) for the branch joint E.
- The main pipe A with N1~N10 downstream indoor units that total capacity is 140×6+56×2+71×2=1094, thus select BJF-1344-CM(i. for the branch joint A.
- C Main pipe (Refer to Table.5-3, Table.5-5): Main pipe L1 in the Fig.5-4, which upstream outdoor units total capacity is 10+10+18=38, base on table.5-5, the gas/liquid pipe diameter are Φ 38.1/ Φ 22.2, total capacity of the downstream indoor unit is 140×6+56×2+71×2=1094, base on table.5-3, the gas/liquid pipe diameter are Φ 38.1/ Φ 19.1, take the large one for your selection, final confirm the main pipe diameter is: gas/liquid pipe Φ 38.1/ Φ 22.2.
- D Parallel connect the outdoor units
- The outdoor unit linked by Pipe g1 is 10HP, parallel connects with outdoor unit. refer to Table.5-8 the connective pipe diameter is Φ25.4/Φ12.7; The outdoor unit linked by Pipe g2 is 10HP, parallel connects with outdoor unit.refer to Table.5-8 the connective pipe diameter is

 Φ 25.4/ Φ 12.7; The outdoor unit linked by Pipe g3 is 18HP, parallel connects with outdoor unit. refer to Table.5-8 the connective pipe diameter is Φ 31.8/ Φ 19.1.

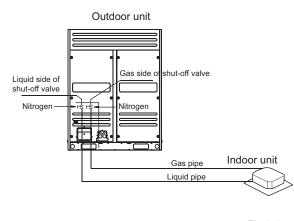
- The upstream of G1 is the two parallel connected outdoor units, refer to Table.5-8 select the three parallel connected outdoor unit, the pipe diameter is Ø38.1/Ø19.1.
- Parallel connect the three outdoor units, refer to Table.5-8 should select BJC-03-CM(i) for outdoor unit connective pipes (L+M).

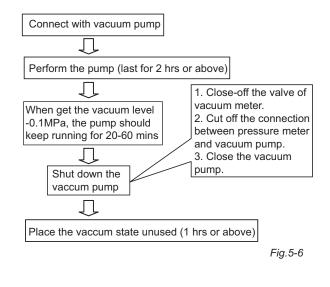
5.8 Remove dirt or water in the piping

- Make sure there is no any dirt or water before connecting the piping to the outdoor units.
- Wash the piping with high pressure nitrogen, never use refrigerant of the outdoor unit.

5.9 Gas tight test

- Upon set up the indoor unit pipeline, please connect the Hipressure pipe with shut-off valve firstly.
- 2) Weld the pipe at the low pressure side to the meter connector.
- Use the vacuum pump discharging air inside the liquid side 3) shut-off valve and meter connecter, until to the -1kgf/cm².
- Close the vacuum pump, charge 40kgf/cm² nitrogen gas from
- the piston of shut-off valve and from the meter connector. Pressure inside should be maintained at there no less than 24 hrs.




Fig.5-5

CAUTION

- Pressurized nitrogen (3.9MPa; 40kgf/cm²) is used for airtightness test.
- It is not allow to use oxygen, combustible gas or toxic gas to conduct the airtightness test.
- When welding, please use wet cloth insulating the low pressure valve for protection.
- For avoid the equipment be damaged, the pressure maintainedtime should not last too long.

5.10 Vacuum with vacuum pump

- 1) Use the vacuum pump which vacuum level lower than -0.1MPa and the air discharge capacity above 40L/min.
- The outdoor unit is not necessary to vacuum, don't open the outdoor unit gas and liquid pipe shut-off valves.
- 3) Make sure the vacuum pump could result as -0.1MPa or below after 2 hrs or above operation. If the pump operated 3 hrs or above could not achieve to -0.1MPa or below, please check whether water mix or gas leak inside of the pipe.

CAUTION

- Don't mix up the different refrigerants or abuse the tools and measurements which directly contact with refrigerants.
- Don't adopt refrigerant gas for air vacuuming.
- If vacuum level could not get to -0.1MPa, please check whether resulted by leakage and confirm the leakage site. If no leakage, please operate the vacuum pump again 1 or 2 hrs.

5.11 Refrigerant amount to be added

Calculate the added refrigerant according to the diameter and the length of the liquid side pipe of the outdoor/indoor unit connection. The refrigerant is R410A.

Table.5-10

Pipe size on liquid side	Refrigerant to be Added per meter
Ф6.4	0.022kg
Ф9.5	0.057kg
Φ12.7	0.110kg
Φ15.9	0.170kg
Φ19.1	0.260kg
Ф22.2	0.360kg
Ф25.4	0.520kg
Ф28.6	0.680kg

5.12 The Installation key points of connective pipes between outdoor units

- Connect the pipes between outdoor units, the pipes should place horizontally (Fig.5-7,Fig.5-8), it is not allow the concave at junction site(Refer to Fig.5-9).
- All connective pipes between the outdoor units are not allowed to over than the height of every outlets of the pipes(Refer to Fig.5-10).

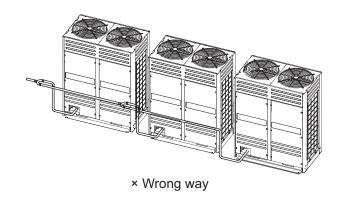
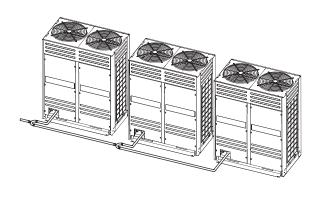
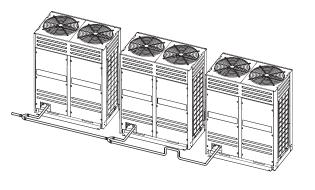
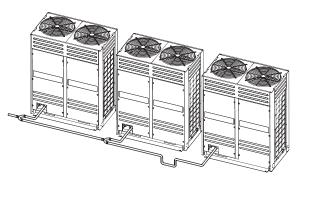




Fig.5-10


 \checkmark Correct way

```
Fig.5-7
```

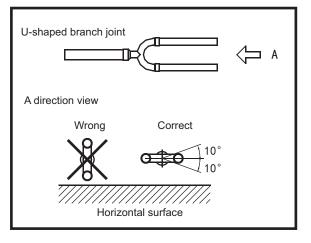
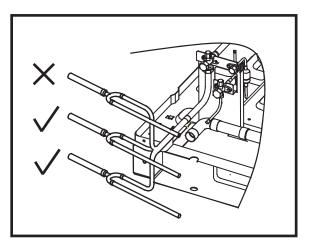


✓ Correct way

Fig.5-8

× Wrong way



 The branch joint must be installed horizontally, error angle of it should not large than 10°. Otherwise, malfunction will be

caused.

Fig.5-11

4) For avoid oil accumulate at the outdoor unit, please install the branch joints properly.

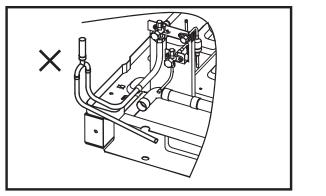


Fig.5-13

6. ELECTRIC WIRING

6.1 SW2 query instructions

Use application of the SW2 spot check Table.6-1

Serial Num	Normal Display	Normal display	Note	
1	0	Outdoor unit address	0,1,2,3	
2	1	Outdoor unit capacity itself	8,10,12,14,16,18	
3	2	Modular outdoor unit qty.	Avai lable for main unit	
4	3	Setting of indoor units qty.	Avai lable for main unit	
5	4	Total capacity of outdoor units	Capacity requirement	
6	5	Total requirement of indoor unit capacity	Available for main unit	
7	6	Total requirement of main unit corrected capacity	Available for main unit	
8	7	Operation	0, 2, 3, 4	
9	8	This outdoor unit actual operation capacity	Capacity requirement	
10	9	Speed of fan 1		
11	10	Speed of fan 2		
12	11	T2/T2B average Temp	Actual value	
13	12	T3 pipe temp	Actual value	
14	13	T4 ambient temp	Actual value	
15	14	Discharge Temp.of Inv. compressor	Actual value	
16	15	Discharge Temp.of fixed compressor	Actual value	
17	16	Tp saturation Temp	Actual value + 30	
18	17	Current of inverter compressor	Actual value	
19	18	Current of fixed_1 compressor	Actual value	
20	19	Opening degree of EXV 1		
21	20	Opening degree of EXV 2		
22	21	High pressure	Actual value X 10 MPa	
23	22	Qty. of indoor unit	Actual value	
24	23	Qty. of operating indoor units	Actual value	
25	24	Priority mode	0,1,2,3,4	
26	25	Noise control mode 0,1,2,3		
27	26	Reserve		
28	27	DC voltage		
29	28	Reserve		
30		The last error or protection code	Without error/protection, display 8.8.8.	
31			Check end	

Normal display: Display qty. of indoor units which communicate with outdoor unit on standby mode. In case of cap. requirement, display running frequency of compressor.

Operation mode: 0-OFF/FAN; 2-Cooling; 3-Heating; 4-Constraint cooling;

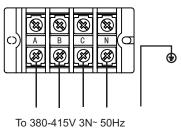
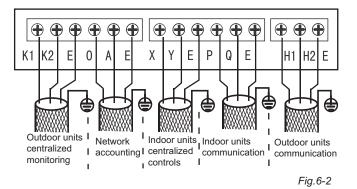
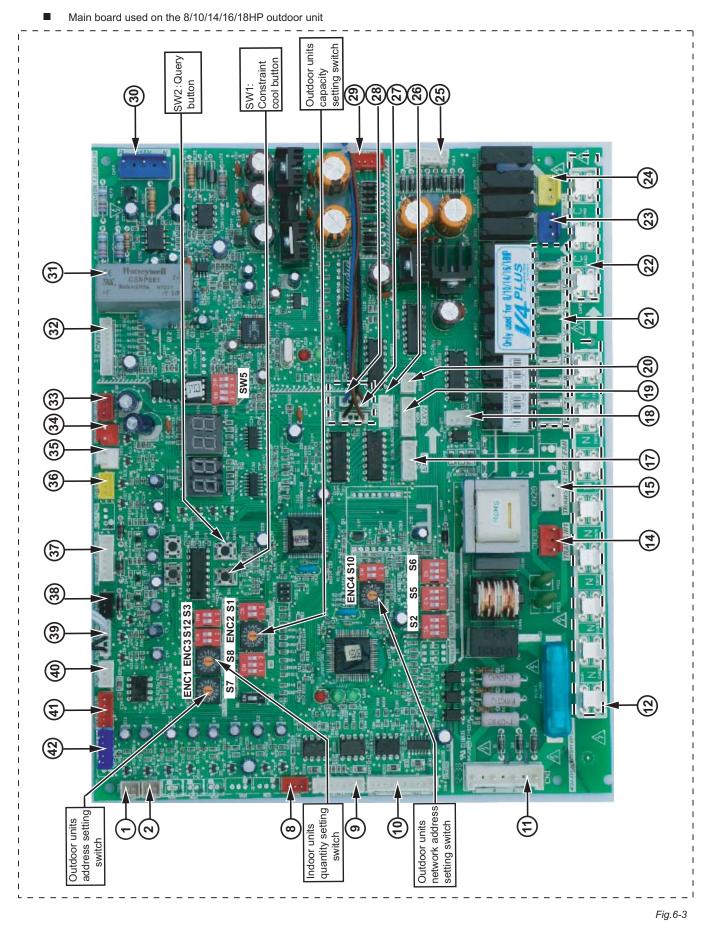
Fan speed: 0-stop; 1~15: speed increase sequentially, 15 is the max. fan speed;

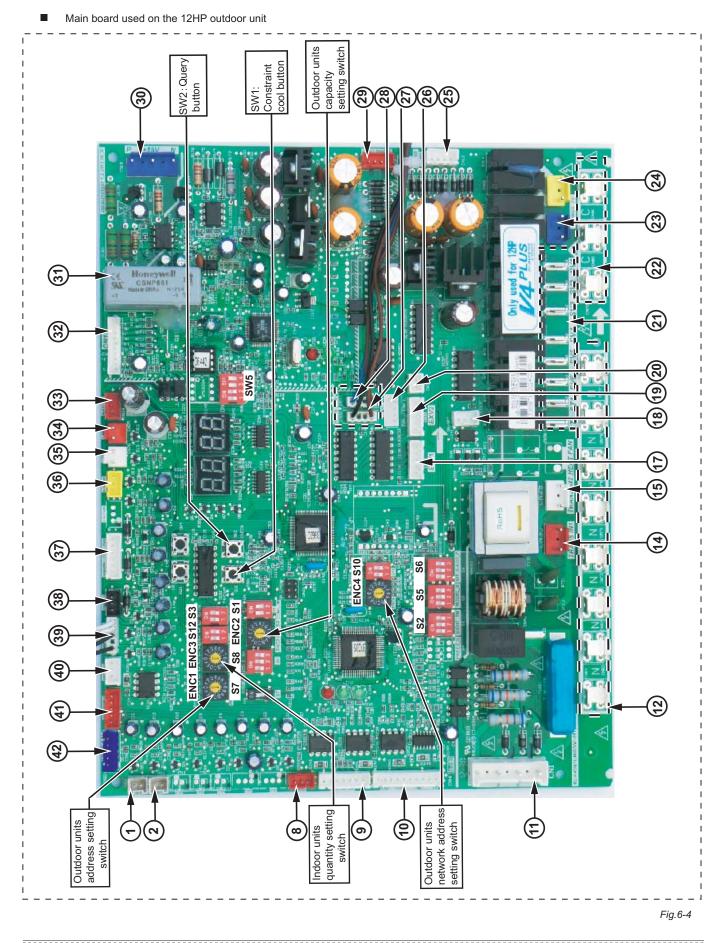
EXV opening degree: Pulse count=display value*8; Noise control mode: 0- Night silent mode ; 1-silent mode; 2-super silent mode ;3-none silent mode;

Priority mode: 0-heating priority mode; 1-cooling priority mode; 2-number 63 &the more operating mode first; 3-respond the heating mode only; 4-respond the cooling mode only; SW1: constraint cool button SW2:query switch; ENC1:outdoor units address setting switch; ENC2:outdoor units capacity setting switch; ENC3:indoor units qty. setting switch;

ENC4:network address setting switch;

6.2 Terminal base function


Fig.6-1

6.3 Explanation of main board

6.3 Explanation of main board

Explanation of main board

Table.6-2

No.	Content
1	Discharge Temp. sensed port of the Inv. compressor
2	Discharge Temp. sensed port of the fix_1(8,10HP:Inv.) Compressor
8	Power supply port in the Mid-adapted panel
9	Reserve
10	Wiring port for communication between indoor and outdoor units, indoor unit network, outdoor unit network and network accounting
11	Phase inspection port
12	Null line port
14	Power input of the No.1 transformer
15	Power input of the No.2 transformer
17	EXV 1 driving port
18	Reserve
19	EXV 2 driving port
20	Power supply port of 12V DC
21	Loading output terminal
22	Loading output terminal
23	Loading output terminal
24	Loading output terminal
25	Power output of the No.1 transformer
26	Control port of AC fan
27	High-fan control port of AC fan
28	Low-fan control port of AC fan
29	Power output of the No.2 transformer
30	Port for inverter module voltage inspection
31	Mutual inductor for DC main lead current inspection
32	Activation port of inverter module
33	Power supply connected port of the main control panel
34	ON/OFF signal input port for system low pressure inspection
35	ON/OFF signal input port for system high pressure inspection
36	Input port for system high pressure inspection
37	Current inspection port of the inverter(fixed) compressors
38	Reserve
39	Inspection port for outdoor ambient Temp. and condensator coil
40	Communication ports among outdoor units
41	Control port of DC fan A
42	Control port of DC fan B(Only for DC+DC condenser fan type)

CAUTION

- Before debugging the power supply connected port of the main control panel, it must set the indoor and outdoor units addresses.
- There are high electric in the electric control box,don't touch except for the professionals.

6.4 Dial codes definition

ENC1	ENC3	S12 S3	S 7	S8	ENC2	S1
\$072 0	0	ON ON	ON	ON	- State	ON
DICLO	69L ²	1212 812 cm 81	100		INGEROWSK	And March
S2	S 5	S6	ENC4	S1	0	SW5
						ON DIP

Fig.6-5

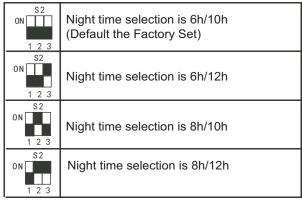
ENC1 definition

ENC2 definition

Outdoor units capacity setting switch Effective to 0-5 0-5 stand for 8HP-18HP

ENC4 definition

Network address setting switch Effective to 0-7


SW5 definition

SW5 ON 1 2 3 4	12HP outdoor unit setting
SW5 0 N 1 2 3 4	8/10/14/16/18HP outdoor unit setting

S1 definition

S1 ON 1 2	Starting time is set about 5 minutes
S1 ON 1 2	Starting time is set about 12 minutes (Default the Factory Set)

S2 definition

S3 definition

0N 53 1 2	Night silent mode (Default the Factory Set)
S3 ON 1 2	Silent mode
S3 ON 1 2	Super silent mode
S3 ON 1 2	None silent mode

S5 definition

S5 0N 1 2 3	Heating priority mode (Default the Factory Set)
S5 ON 1 2 3	Cooling priority mode
S5 ON 1 2 3	number 63 & the more operating mode first
S 5 ON 1 2 3	Respond the heating mode only
S5 ON 1 2 3	Respond the cooling mode only

S6 definition

S6 ON 1 2 3	Automatic search address
S6 ON 1 2 3	Nonautomatic search address. (The communication way of the original indoor units) (Default the Factory Set)
S6 ON 1 2 3	Clean the indoor unit address (Effective to automatic searching new indoor units)

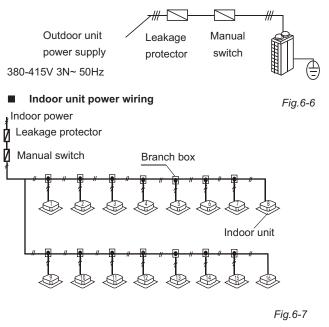
S7 definition

ON 1	Without setting the numbers of indoor units (Default the Factory Set)
S7 ON 1	Need to set the numbers of indoor units
S8 defir	nition

58 definition

S8 ON 1 2 3	For DC Fan+AC Fan
S8 ON 1 2 3	For DC Fan+DC Fan

S10 definition


Reserve

ENC3 and S12 definition

ENC3	S12 ON	Setting the numbers of indoor units to be 0-15
ENC3	\$ 12 ON	Setting the numbers of indoor units to be 16-31
ENC 3	S12 ON	Setting the numbers of indoor units to be 32-47
ENC 3	S12 ON	Setting the numbers of indoor units to be 48-63

6.5 Electric wiring system and installation

Outdoor unit power wiring

Set refrigerant piping system, signal wires between indoor-indoor unit, and that between outdoor-outdoor unit into one system.

CAUTION

- Power must unified supply to all indoor units in the same system.
- Please do not put the signal wire and power wire in the same wire tube; keep distance between the two tubes. (Current capacity of power supply: less than 10A--300mm, less than 50A--500mm.)
- Make sure to set address of outdoor unit in case of parallel multi-outdoor units.

6.6 Electric parameter form of outdoor unit

Table.6-3

System		utdoc	or Unit		Power Current		Compressor		OFM		
НР	Voltage	Hz	Min.	Max.	MCA	TOCA	MFA	MSC	RLA	КW	FLA
	380							-	17.4		
8HP	400	50	342	456	21.8	24.5	25	-	16.5	0.424	4.40
	415							-	15.9	1	
	380							-	17.4		
10HP	400	50	342	456	21.8	24.5	25	-	16.5	0.424	4.40
	415							-	15.9	0.121	4.40
	380							-/68	6.2+9.8		
12HP	400	50	342	456	20.0	24.5	25	-/64.6	5.9+9.3	0.48	5.50
	415		•					-/62.3	5.7+9	0.40	5.50
	380							-/62.3			
14HP	400	50	342	456	22.8	33.0	40	-/62 -/58.9	17.4+8.8 16.5+8.4	0.00	7.00
1405	400	50	342	430	22.0	55.0	40			0.80	7.30
	380							-/56.8	15.9+9		
16HP		50	342	456	34.0	36.0	40	-/68 -/64.6	17.4+9.8		
IVE	400	50	342	430	54.0	50.0	40	-/64.0	16.5+9.3 15.9+9	0.80	7.30
	415 380							-/62.3 -/85	17.4+12		
18HP	400	50	342	456	43.6	46.0	50	-/80.8	16.5+11.4	1	
	415							-/77.8	15.9+11	0.85	8.80
	380							-	17.4*2		
20HP	400	50	342	456	43.6	49.0	50	-	16.5*2	0.85	8.80
	415							_	15.9*2	0.00	0.00
	380							- -/68	17.4+6.2+9.8		
22HP	400		49.0	50	-/64.6	16.5+5.9+9.3	0.90	9.90			
22111	415	00	042	400	41.5	40.0	50	-/62.3	15.9+5.7+9	0.90	9.90
	380										
24HP		50	342	456	54.6	57 5	60	-/62	17.4*2+8.8	4 00	44 70
2405	400	50	342		54.0	57.5	60	-/58.9	16.5*2+8.4	1.22	11.70
	415 380							-/56.8	15.9*2+8.1		
26HP	400	50	342	456	57.8	60.5	65	-/68 -/64.6	17.4*2+9.8 16.5*2+9.3	1.22	11.70
20111	415		•		07.0	00.0	00	-/62.3	15.9*2+9	1.22	11.70
	380							-/85	17.4*2+12		
28HP	400	50	342	456	65.3	70.5	65	-/80.8	16.5*2+11.4	1.28	12.80
	415							-/77.8	15.9*2+11	1	
	380							-/130	17.4*2+9.8+8.8		
30HP	400	50	342	456	68.8	69.0	70	-/123.5	16.5*2+9.3+8.4	1.60	14.60
	415							-/119.0	15.9*2+9+8.1		
	380	50	240	450	70.0	70.0	00	-/147	17.4*2+12+8.8	1.00	44.00
32HP	400	50	342	456	76.3	79.0	80	-/139.7	16.5*2+11.4+8.4	1.60	14.60
	415 380							-/134.5	15.9*2+11+8.1		
34HP	400	50	342	456	79.5	82.0	90	-/153 -/145.4	17.4*2+12+9.8		
34111		50	542	450	79.5	02.0	90	-/145.4	16.5*2+11.4+9.3 15.9*2+11+9	1.65	16.10
	415										
36HP	380 400	50	342	456	87.0	92.0	90	-/170 -/161.5	17.4*2+12*2	ł	
00111		00	0-12	400	07.0	92.U	30	-/161.5	16.5*2+11.4*2 15.9*2+11*2	1.65	16.10
	415 380						ļ	-/85	17.4*3+12		
38HP			456	6 87.1 9	95.0	90	-/80.8	16.5*3+11.4	1 70	17.00	
00111		55	572	,00	07.1		-/77.8	15.9*3+11	1.70	17.20	
	415 380					-/130	17.4*3+9.8+8.8				
40HP	400	50	342	456	90.6	93.5	100	-/123.5			
40111		00	0-12	-50	30.0	33.5	100	-/123.5	16.5*3+9.3+8.4 15.9*3+9+8.1	2.02	19.00
	415							, 113.0	10.0 0 0 0.1	I	

System	Οι	Dutdoor Unit Power Current		ent	Compressor		OFM					
HP	Voltage	Hz	Min.	Max.	MCA	TOCA	MFA	MSC	RLA	KW	FLA	
	380							-/136	17.4*3+9.8*2			
42HP	400	50	342	456	93.8	96.5	100	-/129.2	16.5*3+9.3*2	2.02	19.00	
	415							-/124.5	15.9*3+9*2			
	380							-/153	17.4*3+12+9.8			
44HP	400	50	342	456	101.3	106.5	100	-/145.4	16.5*3+11.4+9.3	2.08	20.10	
	415							-/140.1	15.9*3+11+9			
	380							-/170	17.4*3+12*2			
46HP	400	50	342	456	108.8	116.5	110	-/161.5	16.5*3+11.4*2	2.40	21.90	
	415							-/155.7	15.9*3+11*2			
	380							-/215	17.4*3+12+9.8+8.8			
48HP	400	50	342	456	112.3	115	120	-/204.3	16.5*3+11.4+9.3+8.4	2.40	21.90	
	415							-/196.9	15.9*3+11+9+8.1	1		
	380							-/232	17.4*3+12*2+8.8			
50HP	400	50	342	456	119.8	125	130	-/220.4	16.5*3+11.4*2+8.4	2.45	23.40	
	415							-/212.4	15.9*3+11*2+8.1	1		
	380							-/238	17.4*3+12*2+9.8			
52HP	400	50	342	456	123.0	128	130	-/226.1	16.5*3+11.4*2+9.3	2.45	23.40	
	415							-/217.9	15.9*3+11*2+9			
	380							-/255	17.4*3+12*3			
54HP	400	50	342	456	130.5	138	130	-/242.3	16.5*3+11.4*3	2.50	24.50	
	415							-/233.5	15.9*3+11*3			
	380							-/170	17.4*4+12*2			
56HP	400	400 50	50	342	456	130.6	141	140	-/161.5	16.5*4+11.4*2	2.82	26.30
	415							-/155.7	15.9*4+11*2	1		
	380							-/215	17.4*4+12+9.8+8.8			
58HP	400	50	342	456	134.1	139.5	140	-/204.3	16.5*4+11.4+9.3+8.4	2.82	26.30	
	415							-/196.9	15.9*4+11+9+8.1			
	380							-/232	17.4*4+12*2+8.8			
60HP	400	50	342	456	141.6	149.5	140	-/220.4	16.5*4+11.4*2+8.4	2.88	27.40	
	415							-/212.4	15.9*4+11*2+8.1			
	380							-/238	17.4*4+12*2+9.8			
62HP	400	50	342	456	144.8	152.5	150	-/226.1	16.5*4+11.4*2+9.3	3.20	29.20	
	415							-/217.9	15.9*4+11*2+9			
	380							-/255	17.4*4+12*3			
64HP	400	50	342	456	152.3	162.5	150	-/242.3	16.5*4+11.4*3	3.20	29.20	
	415							-/233.5	15.9*4+11*3	1		
	380							-/300	17.4*4+12*2+9.8+8.8			
66HP	400	50	342	456	155.8	161	160	-/285	16.5*4+11.4*2+9.3+8.4	3.25	30.70	
	415		0.2					-/274.7	15.9*4+11*2+9+8.1			
	380							-/317	17.4*4+12*3+8.8			
68HP	400	50	342	456	163.3	171	160	-/301.2	16.5*4+11.4*3+8.4	3.30	32.20	
	415	50	542	430	105.5	17.1	100	-/290.3	15.9*4+11*3+8.1	0.00	02.20	
	380							-/323				
70HP	400	50	342	456	166.5	174	170	-/306.9	17.4*4+12*3+9.8 16.5*4+11.4*3+9.3	3.35	33 70	
	400							-/295.8	15.9*4+11*3+9	0.00	33.70	
											+	
72HP	380	50	342	456	153	163	170	-/340	17.4*4+12*4	2.40	25.00	
	400	50	542	400	155	103	170	-/323 -/311.4	16.5*4+11.4*4	3.40	35.20	
	415								-/311.4	15.9*4+11*4	L	

Notes:

1. RLA is based on the following conditions, Indoor temp. 27°C DB/19°C WB, Outdoor temp. 35°C DB

2. TOCA means the total value of each OC set.

3. MSC means the Max. current during the starting of compressor.

4. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits.

5. Maximum allowable voltage variation between phase is 2%

6. Selection wire size based on the larger value of MCA or TOCA

7. MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth circuit breaker).

Remark: MCA: Min. Current Amps. (A) TOCA: Total Over-current Amps. (A) MFA: Max. Fuse Amps. (A) MSC: Max. Starting Amps. (A) RLA: Rated Locked Amps. (A) OFM:Outdoor Fan Motor. FLA: Full Load Amps. (A) KW: Rated Motor Output (KW)

6.7 Control system and Installation

- The control line should be shielded wire. Using other wiring shall create signal interference, thus leading to error operation.
- The shielded nets at the two sides of shielded wires are either grounded to the earth, or connected with each other and jointed to the sheet metal along to the earth.
- Control wire could not be bound together with refrigerant pipeline and power wire. When power wire and control wire is distributed in parallel form, keep gap between them above 300mm so as to preventing signal interference.
- Control wire could not form closed loop.
- Control wire has polarity, so be careful when connecting.

NOTE

The shield net should be grounded at the wiring terminal of outdoor unit. The inlet and outlet wire net of indoor communication wire should be connected directly and could not be grounded, and form open circuit at the shield net of final indoor unit.

6.8 Signal wire of indoor/outdoor units

Signal wire of indoor/outdoor unit adopts 3-core shielded wire (≥0.75mm²) which has polarity, please connect it correctly.

Outdoor unit Outdoor unit Outdoor unit Outdoor unit (slave unit) (slave unit) (slave unit) (slave unit)

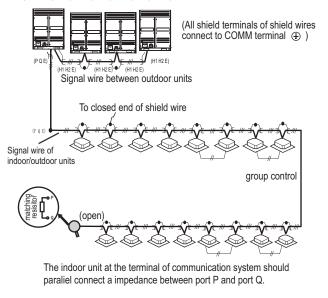
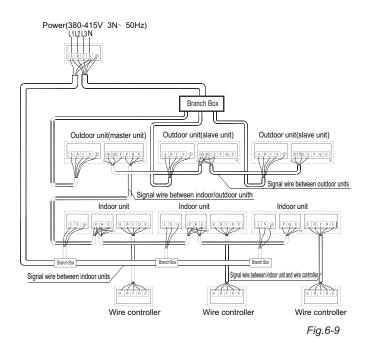



Fig.6-8

7. TRIAL RUN

7.1 Inspection and confirmation before commissioning

- Check and confirm that refrigeration pipe line and communication wire with indoor and outdoor unit have been connected to the same refrigeration system. Otherwise, operation troubles shall happen.
- Power voltage is within ±10% of rated voltage.
- Check and confirm that the power wire and control wire are correctly connected.
- Check whether wire controller is properly connected.
- Before powering on, confirm there is no short circuit to each line.
- Check whether all units have passed nitrogen pressure-keeping test for 24 hours with R410A: 40kg/cm².
- Confirm whether the system to debugging has been carried out vacuum drying and packed with refrigeration as required.

7.2 Preparation before debugging

- Calculating the additional refrigerant quantity for each set of unit according to the actual length of liquid pipe.
- Keep required refrigerant ready.
- Keep system plan, system piping diagram and control wiring diagram ready.
- Record the setting address code on the system plan.
- Turn on power switches outdoor unit in advance, and keep connected for above 12 hours so that heater heating up refrigerant oil in compressor.
- Turn on air pipe stop valve, liquid pipe stop valve, oil balance valve and air balance valve totally. If the above valves do not be turned on totally, the unit should be damaged.
- Check whether the power phase sequence of outdoor unit is correct.
- All dial switch to indoor and outdoor unit have been set according to the Technical Requirement of Product.

7.3 Fill the name of connected system

To clearly identify the connected systems between two or more indoor units and outdoor unit, select names for every system and record them on the nameplate on the outdoor electric control box cover.

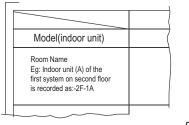
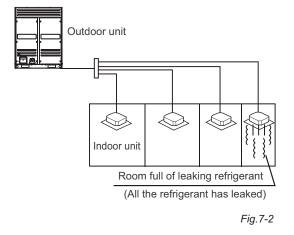



Fig.7-1

7.4 Caution on refrigerant leakage

- This air conditioner adopts R410A as refrigerant, which is safe and noncombustible.
- The room for air conditioner should be big enough that refrigerant leakage can not reach the critical thickness. Besides this, you can take some action on time.
- Critical thickness-----the max thickness of Freon without any harm to person. R410A critical thickness:0.3 [kg/m³]

- Calculate the critical thickness through following steps, and take necessary actions.
- Calculate the sum of the charge volume (A[kg])
 Total refrigerant volume=refrigerant volume when
 delivered(nameplate)+superaddition
- Calculate the indoor cubage (B[m³]) (as the minimum cubage)
- Calculate the refrigerant thickness.

 $\frac{A [kg]}{B [m^3]} \le \text{Critical thickness: } 0.3 [kg/m^3]$

- Countermeasure against overhigh thickness
- Install mechanical ventilator to reduce the refrigerant thickness under critical level. (ventilate regularly)
- Install leakage detector alarming device related to mechanical ventilator if you can not regularly ventilate.

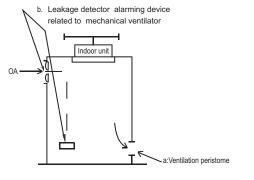


Fig.7-3

7.5 Turn over to customer

Be sure to deliver the Installation Manual of the indoor unit, and the outdoor unit to the user.

8. CUSTOMER DETAILS

Branch Address	:
Telephone	:
Person to be contacted	:
Dealer address	:
Telephone	:
Person to be contacted	:

Signature of the Dealer with Seal.

In all correspondence/communication state your name, address, the serial number of your air conditioning unit, date of purchase and dealer's name (include address), location of unit and description of problem, for prompt and immediate attention

Name of Customer	:
Address	:
Sr.No. of the Unit	:
Sr.No. of the Compressor	Date of purchase:
Invoice No	:

图号H升级到I:10[~]12页分歧管型号升级到***(i)(带保温棉分歧管),同时更改11页表5-5 66[~]72HP对应的分歧管型号。